长三角太阳能光伏技术创新中心

Interface Engineering and Modulation of Nickel Oxide for

High Air-Stable p-Type Crystalline Silicon Solar Cells

Author: Le Li, jiahui Xu, et.al

Journal: Smal 2025, 2411818

Abstract

Dopant-free passivating contact crystalline silicon solar cells hold the potential of higher

efficiency and cost down. In the hole-transport terminal, one still faces the challenge of trade-

off between efficiency and stability. in this work, a H-Al₂O₃/NiO_x/Ni stacked hole-transport

layer is proposed, where the H-Al₂O₃ standing for H-rich Al₂O₃ film can effectively reduce the

interfacial defects and the high work function Ni metal results in a low contact resistance of

 $47.12 \text{ m}\Omega \text{ cm}^2$. Consequently, the solar cell achieves an efficiency of 20.51%, with a fill factor

of 84.83%, demonstrating satisfactory stability. This work provides a strategy for reducing

interfacial defects and highlights the potential of stacked structure design for enhancing

passivated contact solar cell performance.

- 1 -

长三角太阳能光伏技术创新中心

Article information: https://doi.org/10.1002/smll.202411818